Re: [BLOG] Configuring JanusGraph for spark-yarn


HadoopMarc <bi...@...>
 


Hi Joe,

To shed some more light on the running figures you presented, I ran some tests on my own cluster:

1. I loaded the default janusgraph-hbase table with the following simple script from the console:

graph=JanusGraphFactory.open("conf/janusgraph-hbase.properties")
g
= graph.traversal()
m
= 1200L
n
= 10000L
(0L..<m).each{
       
(0L..<n).each{
                v1
= g.addV().id().next()
                v2
= g.addV().id().next()
                g
.V(v1).addE('link1').to(g.V(v2)).next()
                g
.V(v1).addE('link2').to(g.V(v2)).next()
       
}
        g
.tx().commit()
}

This scipt runs about 20(?) minutes and results in 24M vertices and edges committed to the graph.

2. I did an OLTP g.V().count() on this graph from the console: 11 minutes first time, 10 minutes second time

3. I ran OLAP jobs on this graph using janusgraph-hhbase in two ways:
    a) with g = graph.traversal().withComputer(SparkGraphComputer)  
    b) with g = graph.traversal().withComputer(new Computer().graphComputer(SparkGraphComputer).workers(10))

the properties file was as in the recipe, with the exception of:
   spark.executor.memory=4096m       # smaller values might work, but the 512m from the recipe is definitely too small
   spark.executor.instances=4
   #spark.executor.cores not set, so default value 1

This resulted in the following running times:
   a) stage 0,1,2 => 12min, 12min, 3s => 24min total
   b) stage 0,1,2 => 18min, 1min, 86ms => 19 min total

Discussion:
  • HBase is not an easy source for OLAP: HBase wants large regions for efficiency (configurable, but typically 2-20GB), while mapreduce inputformats (like janusgraph's HBaseInputFormat) take regions as inputsplits by default. This means that only a few executors will read from HBase unless the HBaseInputFormat is extended to split a region's keyspace into multiple inputsplits. This mismatch between the numbers of regions and spark executors is a potential JanusGraph issue. Examples exist to improve on this, e.g. org.apache.hadoop.hbase.mapreduce.RowCounter

  • For spark stages after stage 0 (reading from HBase), increasing the number of spark tasks with the "workers()" setting helps optimizing the parallelization. This means that for larger traversals than just a vertex count, the parallelization with spark will really pay off.

  • I did not try to repeat your settings with a large number of cores. Various sources discourage the use of spark.executor.cores values larger than 5, e.g. https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/, https://stackoverflow.com/questions/37871194/how-to-tune-spark-executor-number-cores-and-executor-memory
Hopefully, these tests provide you and other readers with some additional perspectives on the configuration of janusgraph-hbase.

Cheers,    Marc

Op donderdag 10 augustus 2017 15:40:21 UTC+2 schreef Joseph Obernberger:

Thank you Marc.

I did not set spark.executor.instances, but I do have spark.cores.max set to 64 and within YARN, it is configured to allow has much RAM/cores for our 5 server cluster.  When I run a job on a table that has 61 regions, I see that 43 tasks are started and running on all 5 nodes in the Spark UI (and running top on each of the servers).  If I lower the amount of RAM (heap) that each tasks has (currently set to 10G), they fail with OutOfMemory exceptions.  It still hits one HBase node very hard and cycles through them.  While that may be a reason for a performance issue, it doesn't explain the massive number of calls that HBase receives for a count job, and why using SparkGraphComputer takes so much more time.

Running with your command below appears to not alter the behavior.  I did run a job last night with DEBUG turned on, but it produced too much logging filling up the log directory on 3 of the 5 nodes before stopping. 
Thanks again Marc!

-Joe


On 8/10/2017 7:33 AM, HadoopMarc wrote:
Hi Joe,

Another thing to try (only tested on Tinkerpop, not on JanusGraph): create the traversalsource as follows:

g = graph.traversal().withComputer(new Computer().graphComputer(SparkGraphComputer).workers(100))

With HadoopGraph this helps hdfs files with very large or no partitions to be split across tasks; I did not check the effect yet for HBaseInputFormat in JanusGraph. And did you add spark.executor.instances=10 (or some suitable number) to your config? And did you check in the RM ui or Spark history server whether these executors were really allocated and started?

More later,

Marc

Op donderdag 10 augustus 2017 00:13:09 UTC+2 schreef Joseph Obernberger:

Marc - thank you.  I've updated the classpath and removed nearly all of the CDH jars; had to keep chimera and some of the HBase libs in there.  Apart from those and all the jars in lib.zip, it is working as it did before.  The reason I turned DEBUG off was because it was producing 100+GBytes of logs.  Nearly all of which are things like:

18:04:29 DEBUG org.janusgraph.diskstorage.hbase.HBaseKeyColumnValueStore - Generated HBase Filter ColumnRangeFilter [\x10\xC0, \x10\xC1)
18:04:29 DEBUG org.janusgraph.graphdb.transaction.StandardJanusGraphTx - Guava vertex cache size: requested=20000 effective=20000 (min=100)
18:04:29 DEBUG org.janusgraph.graphdb.transaction.vertexcache.GuavaVertexCache - Created dirty vertex map with initial size 32
18:04:29 DEBUG org.janusgraph.graphdb.transaction.vertexcache.GuavaVertexCache - Created vertex cache with max size 20000
18:04:29 DEBUG org.janusgraph.diskstorage.hbase.HBaseKeyColumnValueStore - Generated HBase Filter ColumnRangeFilter [\x10\xC2, \x10\xC3)
18:04:29 DEBUG org.janusgraph.graphdb.transaction.StandardJanusGraphTx - Guava vertex cache size: requested=20000 effective=20000 (min=100)
18:04:29 DEBUG org.janusgraph.graphdb.transaction.vertexcache.GuavaVertexCache - Created dirty vertex map with initial size 32
18:04:29 DEBUG org.janusgraph.graphdb.transaction.vertexcache.GuavaVertexCache - Created vertex cache with max size 20000

Do those mean anything to you?  I've turned it back on for running with smaller graph sizes, but so far I don't see anything helpful there apart from an exception about not setting HADOOP_HOME.
Here are the spark properties; notice the nice and small extraClassPath!  :)

Name

Value

gremlin.graph

org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph

gremlin.hadoop.deriveMemory

false

gremlin.hadoop.graphReader

org.janusgraph.hadoop.formats.hbase.HBaseInputFormat

gremlin.hadoop.graphWriter

org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.graphWriter.hasEdges

false

gremlin.hadoop.inputLocation

none

gremlin.hadoop.jarsInDistributedCache

true

gremlin.hadoop.memoryOutputFormat

org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.outputLocation

output

janusgraphmr.ioformat.conf.storage.backend

hbase

janusgraphmr.ioformat.conf.storage.hbase.region-count

5

janusgraphmr.ioformat.conf.storage.hbase.regions-per-server

5

janusgraphmr.ioformat.conf.storage.hbase.short-cf-names

false

janusgraphmr.ioformat.conf.storage.hbase.table

TEST0.2.0

janusgraphmr.ioformat.conf.storage.hostname

10.22.5.65:2181

log4j.appender.STDOUT

org.apache.log4j.ConsoleAppender

log4j.logger.deng

WARNING

log4j.rootLogger

STDOUT

org.slf4j.simpleLogger.defaultLogLevel

warn

spark.akka.frameSize

1024

spark.app.id

application_1502118729859_0041

spark.app.name

Apache TinkerPop's Spark-Gremlin

spark.authenticate

false

spark.cores.max

64

spark.driver.appUIAddress

http://10.22.5.61:4040

spark.driver.extraJavaOptons

-XX:ReservedCodeCacheSize=100M -XX:MaxMetaspaceSize=256m -XX:CompressedClassSpaceSize=256m

spark.driver.extraLibraryPath

/opt/cloudera/parcels/CDH-5.10.0-1.cdh5.10.0.p0.41/lib/hadoop/lib/native

spark.driver.host

10.22.5.61

spark.driver.port

38529

spark.dynamicAllocation.enabled

true

spark.dynamicAllocation.executorIdleTimeout

60

spark.dynamicAllocation.minExecutors

0

spark.dynamicAllocation.schedulerBacklogTimeout

1

spark.eventLog.dir

hdfs://host001:8020/user/spark/applicationHistory

spark.eventLog.enabled

true

spark.executor.extraClassPath

/opt/cloudera/parcels/CDH/jars/janusgraph-hbase-0.2.0-SNAPSHOT.jar:./lib.zip/*:/opt/cloudera/parcels/CDH/lib/hbase/bin/../lib/*:/etc/hbase/conf:

spark.executor.extraJavaOptions

-XX:ReservedCodeCacheSize=100M -XX:MaxMetaspaceSize=256m -XX:CompressedClassSpaceSize=256m -Dlogback.configurationFile=logback.xml

spark.executor.extraLibraryPath

/opt/cloudera/parcels/CDH-5.10.0-1.cdh5.10.0.p0.41/lib/hadoop/lib/native

spark.executor.heartbeatInterval

100000

spark.executor.id

driver

spark.executor.memory

10240m

spark.externalBlockStore.folderName

spark-27dac3f3-dfbc-4f32-b52d-ececdbcae0db

spark.kyroserializer.buffer.max

1600m

spark.master

yarn-client

spark.network.timeout

90000

spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_HOSTS

host005

spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES

http://host005:8088/proxy/application_1502118729859_0041

spark.scheduler.mode

FIFO

spark.serializer

org.apache.spark.serializer.KryoSerializer

spark.shuffle.service.enabled

true

spark.shuffle.service.port

7337

spark.ui.filters

org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter

spark.ui.killEnabled

true

spark.yarn.am.extraLibraryPath

/opt/cloudera/parcels/CDH-5.10.0-1.cdh5.10.0.p0.41/lib/hadoop/lib/native

spark.yarn.appMasterEnv.CLASSPATH

/etc/haddop/conf:/etc/hbase/conf:./lib.zip/*

spark.yarn.config.gatewayPath

/opt/cloudera/parcels

spark.yarn.config.replacementPath

{{HADOOP_COMMON_HOME}}/../../..

spark.yarn.dist.archives

/home/graph/janusgraph-0.2.0-SNAPSHOT-hadoop2.JOE/lib.zip

spark.yarn.dist.files

/home/graph/janusgraph-0.2.0-SNAPSHOT-hadoop2.JOE/conf/logback.xml

spark.yarn.dist.jars

/opt/cloudera/parcels/CDH/jars/janusgraph-hbase-0.2.0-SNAPSHOT.jar

spark.yarn.historyServer.address

http://host001:18088

zookeeper.znode.parent

/hbase


-Joe

On 8/9/2017 3:33 PM, HadoopMarc wrote:
Hi Gari and Joe,

Glad to see you testing the recipes for MapR and Cloudera respectively!  I am sure that you realized by now that getting this to work is like walking through a minefield. If you deviate from the known path, the odds for getting through are dim, and no one wants to be in your vicinity. So, if you see a need to deviate (which there may be for the hadoop distributions you use), you will need your mine sweeper, that is, put the logging level to DEBUG for relevant java packages.

This is where you deviated:
  • for Gari: you put all kinds of MapR lib folders on the applications master's classpath (other classpath configs are not visible from your post)
  • for Joe: you put all kinds of Cloudera lib folders on the executors classpath (worst of all the spark-assembly.jar)

Probably, you experience all kinds of mismatches in netty libraries which slows down or even kills all comms between the yarn containers. The philosophy of the recipes really is to only add the minimum number of conf folders and jars to the Tinkerpop/Janusgraph distribution and see from there if any libraries are missing.


At my side, it has become apparent that I should at least add to the recipes:

  • proof of work for a medium-sized graph (say 10M vertices and edges)
  • configs for the number of executors present in the OLAP job (instead of relying on spark default number of 2)

So, still some work to do!


Cheers,    Marc


--
You received this message because you are subscribed to the Google Groups "JanusGraph users list" group.
To unsubscribe from this group and stop receiving emails from it, send an email to janusgraph-use...@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

Virus-free. www.avg.com

Join janusgraph-users@lists.lfaidata.foundation to automatically receive all group messages.