JanusGraph 0.5.3 SparkGraph Computer with YARN Error - java.lang.ClassCastException: org.apache.hadoop.yarn.proto.YarnServiceProtos$GetNewApplicationRequestProto cannot be cast to org.apache.hadoop.hbase.shaded.com.google.protobuf.Message


kndoan94@...
 
Edited

Hello!

I am currently trying to set up SparkGraphComputer using JanusGraph with a CQL storage and ElasticSearch Index backend, and am receiving an error when trying to complete a simple vertex count traversal in the gremlin console:

gremlin> hadoop_graph = GraphFactory.open('conf/hadoop-graph/olap/olap-cassandra-HadoopGraph-YARN.properties')
gremlin> hg = hadoop_graph.traversal().withComputer(SparkGraphComputer)
gremlin> hg.V().count()
>> ERROR org.apache.spark.SparkContext  - Error initializing SparkContext.
java.lang.ClassCastException: org.apache.hadoop.yarn.proto.YarnServiceProtos$GetNewApplicationRequestProto cannot be cast to org.apache.hadoop.hbase.shaded.com.google. protobuf.Message
Relevant cluster details
  • JanusGraph Version 0.5.3
  • Spark-Gremlin Version 3.4.6 
  • AWS EMR Release 5.23.0
  • Spark Version 2.4.0
  • Hadoop 2.8.5
  • Cassandra/CQL version 3.11.10 
Implementation Details
Properties File
###########
# Gremlin #
###########

gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphReader=org.janusgraph.hadoop.formats.cql.CqlInputFormat
gremlin.hadoop.graphWriter=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.inputLocation=none
gremlin.hadoop.outputLocation=output


###################
# Index - Elastic #
###################

janusgraphmr.ioformat.conf.index.search.backend=elasticsearch

#Elastic Basic Auth
janusgraphmr.ioformat.conf.index.search.elasticsearch.http.auth.basic.password=[password]
janusgraphmr.ioformat.conf.index.search.elasticsearch.http.auth.basic.username=[username]
janusgraphmr.ioformat.conf.index.search.elasticsearch.http.auth.type=[authtype]


#Hosts
janusgraphmr.ioformat.conf.index.search.hostname=[hosts]
janusgraphmr.ioformat.conf.index.search.index-name=[myindexname]

metrics.console.interval=60000
metrics.enabled= false


#################
# Storage - CQL #
#################

schema.default=none

janusgraphmr.ioformat.conf.storage.backend=cql
janusgraphmr.ioformat.conf.storage.batch-loading=true
janusgraphmr.ioformat.conf.storage.buffer-size=10000
janusgraphmr.ioformat.conf.storage.cql.keyspace=[keyspace]


#HOSTS and PORTS
janusgraphmr.ioformat.conf.storage.hostname=[hosts]
janusgraphmr.ioformat.conf.storage.password=[password]
janusgraphmr.ioformat.conf.storage.username=[username]
cassandra.output.native.port=9042

#InputFormat configuration
cassandra.input.partitioner.class=org.apache.cassandra.dht.Murmur3Partitioner
cassandra.input.widerows=true

####################################
# SparkGraphComputer Configuration #
####################################
spark.master=yarn
spark.submit.deployMode=client

#Spark Job Configurations
spark.sql.shuffle.partitions=1000
spark.dynamicAllocation.enabled=true
spark.shuffle.service.enabled=true
spark.driver.maxResultSize=2G

# Gremlin and Serializer Configuration
gremlin.spark.persistContext=true
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.kryo.registrator=org.janusgraph.hadoop.serialize.JanusGraphKryoRegistrator
spark.executor.extraClassPath=/home/hadoop/janusgraph-full-0.5.3/*

# Special Yarn Configuration (WIP)
spark.yarn.archives=/home/hadoop/janusgraph-full-0.5.3/lib.zip
spark.yarn.jars=/home/hadoop/janusgraph-full-0.5.3/lib/*
spark.yarn.appMasterEnv.CLASSPATH=/etc/hadoop/conf:./lib.zip/*:
spark.yarn.dist.archives=/home/hadoop/janusgraph-full-0.5.3/lib.zip
spark.yarn.dist.files=/home/hadoop/janusgraph-full-0.5.3/lib/janusgraph-cql-0.5.3.jar
spark.yarn.shuffle.stopOnFailure=true


#Spark Driver and Executors
spark.driver.extraLibraryPath=/usr/lib/hadoop/lib/native
spark.executor.extraLibraryPath=/usr/lib/hadoop/lib/native
spark.executor.extraClassPath=janusgraph-cql-0.5.3.jar:./lib.zip/*:./lib/keys/*


In addition to this - I've also tried the same configuration file and implementation listed steps above on an older AWS EMR release, which was running Hadoop 2.7:
  • JanusGraph Version 0.5.3
  • Spark-Gremlin Version 3.4.6 
  • AWS EMR Release 5.11.4
  • Spark Version 2.2.1
  • Hadoop 2.7.3
  • Cassandra/CQL version 3.11.10 

And received a similar error in the gremlin console:

java.lang.IllegalStateException: java.lang.ClassCastException: org.apache.hadoop.yarn.proto.YarnServiceProtos$GetNewApplicationRequestProto cannot be cast to org.apache.hadoop.hbase.shaded.com.google.protobuf.Message



Does anyone have any tips on resolving these issues, or has any experience with implementing JanusGraph 0.5.3 on AWS EMR?

Thanks!


hadoopmarc@...
 

Hi,

Because TinkerPop and JanusGraph do not ship with spark-yarn, all kinds of library conflict can occur when you start using spark-yarn. Since my blog from some years ago, where it was possible to avoid library conflicts, the hbase jars were repackaged leading to new problems. Basically, you have three options to proceed:

  1. forget about the gremlin console and build a java application where you avoid all conflicts by using the maven shade plugin. Some recent evidence that this approach can be successful (I remember another but could not find it):
    https://groups.google.com/g/janusgraph-users/c/Fh0ARPasw8s/m/tkdi_k5nAQAJ

  2. add spark-yarn to one or more janusgraph modules and make a custom build of janusgraph. Use the maven dependency-tree to judiciously exclude transitive dependencies to resolve library conflicts. This requires more maven-fu than the first option, but the advantage is that you end up with a working gremlin console.
  3. put on your blindfold and start deleting jars from the janusgraph lib folder. First candidates are all HBase jars, because they occur in the exception messages. Although the Yarn timeline server uses HBase, the yarn client should not depend on HBase, so the hbase jars can be safely removed. This approach requires some expertise but mostly luck (possibly it cannot succeed at all).

Best wishes,    Marc